Transformaciones básicas de texto
30 min | Última modificación: Diciembre 3, 2020
[1]:
##
## Preparacion de los datos
##
import pandas as pd
data = pd.read_csv(
"https://raw.githubusercontent.com/jdvelasq/datalabs/master/datasets/scopus-abstracts.csv",
sep=",",
thousands=None,
decimal=".",
encoding="utf-8",
)
data.columns
[1]:
Index(['DOI', 'Link', 'Abstract'], dtype='object')
[2]:
##
## Abstracts
##
abstracts = data.Abstract.copy()
abstracts = abstracts.map(lambda w: w[0 : w.find("\u00a9")], na_action="ignore")
abstracts[0]
[2]:
'Mobility is one of the fundamental requirements of human life with significant societal impacts including productivity, economy, social wellbeing, adaptation to a changing climate, and so on. Although human movements follow specific patterns during normal periods, there are limited studies on how such patterns change due to extreme events. To quantify the impacts of an extreme event to human movements, we introduce the concept of mobility resilience which is defined as the ability of a mobility system to manage shocks and return to a steady state in response to an extreme event. We present a method to detect extreme events from geo-located movement data and to measure mobility resilience and transient loss of resilience due to those events. Applying this method, we measure resilience metrics from geo-located social media data for multiple types of disasters occurred all over the world. Quantifying mobility resilience may help us to assess the higher-order socio-economic impacts of extreme events and guide policies towards developing resilient infrastructures as well as a nation’s overall disaster resilience strategies. '
Tokenizers
[3]:
##
## HTML
##
from urllib import request
url = "http://news.bbc.co.uk/2/hi/health/2284783.stm"
html = request.urlopen(url).read().decode("utf8")
html[:60]
[3]:
'<!doctype html public "-//W3C//DTD HTML 4.0 Transitional//EN'
[4]:
!pip3 install -q bs4
WARNING: You are using pip version 20.2.4; however, version 20.3 is available.
You should consider upgrading via the '/usr/bin/python3 -m pip install --upgrade pip' command.
[5]:
##
## Limpieza del HTML
##
from bs4 import BeautifulSoup
from nltk.tokenize import word_tokenize
import nltk
nltk.download('punkt')
raw = BeautifulSoup(html, "html.parser").get_text()
tokens = word_tokenize(raw)
tokens[:40]
[nltk_data] Downloading package punkt to /root/nltk_data...
[nltk_data] Package punkt is already up-to-date!
[5]:
['BBC',
'NEWS',
'|',
'Health',
'|',
'Blondes',
"'to",
'die',
'out',
'in',
'200',
"years'",
'NEWS',
'SPORT',
'WEATHER',
'WORLD',
'SERVICE',
'A-Z',
'INDEX',
'SEARCH',
'You',
'are',
'in',
':',
'Health',
'News',
'Front',
'Page',
'Africa',
'Americas',
'Asia-Pacific',
'Europe',
'Middle',
'East',
'South',
'Asia',
'UK',
'Business',
'Entertainment',
'Science/Nature']
[6]:
##
## Sentence tokenizer
##
nltk.download("punkt")
sent_tokenize = nltk.sent_tokenize
abstracts = abstracts.map(lambda w: sent_tokenize(text=w), na_action="ignore")
abstracts[0]
[nltk_data] Downloading package punkt to /root/nltk_data...
[nltk_data] Package punkt is already up-to-date!
[6]:
['Mobility is one of the fundamental requirements of human life with significant societal impacts including productivity, economy, social wellbeing, adaptation to a changing climate, and so on.',
'Although human movements follow specific patterns during normal periods, there are limited studies on how such patterns change due to extreme events.',
'To quantify the impacts of an extreme event to human movements, we introduce the concept of mobility resilience which is defined as the ability of a mobility system to manage shocks and return to a steady state in response to an extreme event.',
'We present a method to detect extreme events from geo-located movement data and to measure mobility resilience and transient loss of resilience due to those events.',
'Applying this method, we measure resilience metrics from geo-located social media data for multiple types of disasters occurred all over the world.',
'Quantifying mobility resilience may help us to assess the higher-order socio-economic impacts of extreme events and guide policies towards developing resilient infrastructures as well as a nation’s overall disaster resilience strategies.']
[7]:
##
## Numero de sentencias por abstract
##
import matplotlib.pyplot as plt
abstracts.map(lambda w: len(w), na_action="ignore").plot.hist(
color="darkorange", alpha=0.6, rwidth=0.8, edgecolor="k"
)
plt.gca().spines["left"].set_color("lightgray")
plt.gca().spines["bottom"].set_color("gray")
plt.gca().spines["top"].set_visible(False)
plt.gca().spines["right"].set_visible(False)
[8]:
##
## Sentence tokenizer --- Español
##
text_es = """El proceso de leudado de los productos horneados es fundamental para desarrollar sus propiedades de
calidad. El objetivo de este estudio fue evaluar el efecto de diferentes tipos de polvos para hornear en las
propiedades de calidad de muffins. Se evaluaron las propiedades físico-químicas tanto del batido como del producto
final. Además de su influencia en las propiedades farinológicas de la harina y las propiedades texturales y
sensoriales del producto en el almacenamiento. Se encontró la formulación PH16 como la más adecuada, siendo la
de mayor altura (47.66 ± 0.35 mm), menor contenido de humedad (24.31 ± 0.18 %), menor dureza (12.34 ± 0.34 N) y
firmeza de miga más baja (1.84 ± 0.01). El comportamiento de la muestra PH16 en almacenamiento y a nivel sensorial
no tuvo diferencias significativas con la muestra control seleccionada."""
nltk.sent_tokenize(text=text_es, language="spanish")
[8]:
['El proceso de leudado de los productos horneados es fundamental para desarrollar sus propiedades de\ncalidad.',
'El objetivo de este estudio fue evaluar el efecto de diferentes tipos de polvos para hornear en las \npropiedades de calidad de muffins.',
'Se evaluaron las propiedades físico-químicas tanto del batido como del producto \nfinal.',
'Además de su influencia en las propiedades farinológicas de la harina y las propiedades texturales y \nsensoriales del producto en el almacenamiento.',
'Se encontró la formulación PH16 como la más adecuada, siendo la \nde mayor altura (47.66 ± 0.35 mm), menor contenido de humedad (24.31 ± 0.18 %), menor dureza (12.34 ± 0.34 N) y \nfirmeza de miga más baja (1.84 ± 0.01).',
'El comportamiento de la muestra PH16 en almacenamiento y a nivel sensorial \nno tuvo diferencias significativas con la muestra control seleccionada.']
[9]:
##
## Default word tokenization
##
#
# Se extraen nuevamente los abstracts
#
abstracts = data.Abstract.copy()
abstracts = abstracts.map(lambda w: w[0 : w.find("\u00a9")], na_action="ignore")
#
# Default word tokenizer
# Es una instancia del Treebank word tokenizer
#
default_word_tokenize = nltk.word_tokenize
abstracts.map(default_word_tokenize, na_action="ignore")[0][0:40]
[9]:
['Mobility',
'is',
'one',
'of',
'the',
'fundamental',
'requirements',
'of',
'human',
'life',
'with',
'significant',
'societal',
'impacts',
'including',
'productivity',
',',
'economy',
',',
'social',
'wellbeing',
',',
'adaptation',
'to',
'a',
'changing',
'climate',
',',
'and',
'so',
'on',
'.',
'Although',
'human',
'movements',
'follow',
'specific',
'patterns',
'during',
'normal']
[10]:
##
## TokTok tokenizer
##
from nltk.tokenize.toktok import ToktokTokenizer
# note que no separa los puntos de sentencia intermedios en el parrafo
toktok_word_tokenizer = nltk.ToktokTokenizer()
abstracts.map(toktok_word_tokenizer.tokenize, na_action="ignore")[0][0:40]
[10]:
['Mobility',
'is',
'one',
'of',
'the',
'fundamental',
'requirements',
'of',
'human',
'life',
'with',
'significant',
'societal',
'impacts',
'including',
'productivity',
',',
'economy',
',',
'social',
'wellbeing',
',',
'adaptation',
'to',
'a',
'changing',
'climate',
',',
'and',
'so',
'on.',
'Although',
'human',
'movements',
'follow',
'specific',
'patterns',
'during',
'normal',
'periods']
[11]:
##
## Regexp tokenizer
##
from nltk import RegexpTokenizer
TOKEN_PATTERN = r"\w+"
regex_tokenizer = nltk.RegexpTokenizer(pattern=TOKEN_PATTERN, gaps=False)
abstracts.map(regex_tokenizer.tokenize, na_action="ignore")[0][0:40]
[11]:
['Mobility',
'is',
'one',
'of',
'the',
'fundamental',
'requirements',
'of',
'human',
'life',
'with',
'significant',
'societal',
'impacts',
'including',
'productivity',
'economy',
'social',
'wellbeing',
'adaptation',
'to',
'a',
'changing',
'climate',
'and',
'so',
'on',
'Although',
'human',
'movements',
'follow',
'specific',
'patterns',
'during',
'normal',
'periods',
'there',
'are',
'limited',
'studies']
[12]:
##
## Posiciones de los tokens en el texto
##
abstracts.map(lambda w: list(regex_tokenizer.span_tokenize(w)), na_action="ignore")[0][
0:40
]
[12]:
[(0, 8),
(9, 11),
(12, 15),
(16, 18),
(19, 22),
(23, 34),
(35, 47),
(48, 50),
(51, 56),
(57, 61),
(62, 66),
(67, 78),
(79, 87),
(88, 95),
(96, 105),
(106, 118),
(120, 127),
(129, 135),
(136, 145),
(147, 157),
(158, 160),
(161, 162),
(163, 171),
(172, 179),
(181, 184),
(185, 187),
(188, 190),
(192, 200),
(201, 206),
(207, 216),
(217, 223),
(224, 232),
(233, 241),
(242, 248),
(249, 255),
(256, 263),
(265, 270),
(271, 274),
(275, 282),
(283, 290)]
[13]:
##
## Tokenizadores robustos
##
def tokenize_text(text):
sentences = nltk.sent_tokenize(text)
word_tokens = [nltk.word_tokenize(sentence) for sentence in sentences]
return word_tokens
words = abstracts.map(tokenize_text, na_action="ignore")
#
# Dos primeras lineas del primer abstract
#
words[0][0:2]
[13]:
[['Mobility',
'is',
'one',
'of',
'the',
'fundamental',
'requirements',
'of',
'human',
'life',
'with',
'significant',
'societal',
'impacts',
'including',
'productivity',
',',
'economy',
',',
'social',
'wellbeing',
',',
'adaptation',
'to',
'a',
'changing',
'climate',
',',
'and',
'so',
'on',
'.'],
['Although',
'human',
'movements',
'follow',
'specific',
'patterns',
'during',
'normal',
'periods',
',',
'there',
'are',
'limited',
'studies',
'on',
'how',
'such',
'patterns',
'change',
'due',
'to',
'extreme',
'events',
'.']]
Remoción de acentos y caracteres especiales
[14]:
##
## Remocion de acentos
##
import unicodedata
def remove_accented_chars(text):
text = (
unicodedata.normalize("NFKD", text)
.encode("ascii", "ignore")
.decode("utf-8", "ignore")
)
return text
remove_accented_chars("ÁÉÍÓÚÑáéíóúäïöü")
[14]:
'AEIOUNaeiouaiou'
[15]:
##
## Remoción de caracterires especiales
##
import re
def remove_special_characters(text, remove_digits=False):
pattern = r"[^a-zA-z0-9\s]" if not remove_digits else r"[^a-zA-z\s]"
text = re.sub(pattern, "", text)
return text
remove_special_characters(
"Well this was fun! What do you think? 123#@!", remove_digits=True
)
[15]:
'Well this was fun What do you think '
Corrección de texto
[16]:
##
## Correccion de texto --- usando textblob
## (Otras librerias: PyEnchant, aspell-python)
##
# !pip3 install --user textblob
from textblob import Word
w = Word("fianlly")
w.correct()
[16]:
'finally'
[17]:
# check suggestions
w.spellcheck()
[17]:
[('finally', 1.0)]
[18]:
w = Word("flaot")
w.spellcheck()
[18]:
[('flat', 0.85), ('float', 0.15)]
Stemming
[19]:
##
## Stemming
##
from nltk.stem import PorterStemmer
ps = PorterStemmer()
ps.stem("jumping"), ps.stem("jumps"), ps.stem("jumped"), ps.stem("lying"), ps.stem(
"strange"
)
[19]:
('jump', 'jump', 'jump', 'lie', 'strang')
[20]:
from nltk.stem import LancasterStemmer
ls = LancasterStemmer()
ls.stem("jumping"), ls.stem("jumps"), ls.stem("jumped"), ls.stem("lying"), ls.stem(
"strange"
)
[20]:
('jump', 'jump', 'jump', 'lying', 'strange')
[21]:
from nltk.stem import RegexpStemmer
rs = RegexpStemmer("ing$|s$|ed$", min=4)
rs.stem("jumping"), rs.stem("jumps"), rs.stem("jumped"), rs.stem("lying"), rs.stem(
"strange"
)
[21]:
('jump', 'jump', 'jump', 'ly', 'strange')
[22]:
from nltk.stem import SnowballStemmer
ss = SnowballStemmer("english")
ss.stem("jumping"), ss.stem("jumps"), ss.stem("jumped"), ss.stem("lying"), ss.stem(
"strange"
)
[22]:
('jump', 'jump', 'jump', 'lie', 'strang')
Lematizacion
[23]:
##
## Lemmatization
##
nltk.download("wordnet")
from nltk.stem import WordNetLemmatizer
wnl = WordNetLemmatizer()
print(wnl.lemmatize("cars"))
print(wnl.lemmatize("men"))
print(wnl.lemmatize("running"))
print(wnl.lemmatize("ate"))
print(wnl.lemmatize("saddest"))
print(wnl.lemmatize("fancier"))
print("----")
print(wnl.lemmatize("cars", "n")) # n --> nouns
print(wnl.lemmatize("men", "n"))
print(wnl.lemmatize("running", "v")) # v --> verbs
print(wnl.lemmatize("ate", "v"))
print(wnl.lemmatize("saddest", "a")) # --> adjectves
print(wnl.lemmatize("fancier", "a"))
[nltk_data] Downloading package wordnet to /root/nltk_data...
[nltk_data] Package wordnet is already up-to-date!
car
men
running
ate
saddest
fancier
----
car
men
run
eat
sad
fancy
[24]:
##
## spaCy hace la lematizaction basado en speech tagging
## !pip3 install spacy
## !python3 -m spacy download en_core_web_sm
##
# !python3 -m spacy download en_core_web_sm
# import spacy
# nlp = spacy.load("en_core_web_sm")
# nlp = en_core_web_sm.load()
# text = "My system keeps crashing his crashed yesterday, ours crashes daily"
# def lemmatize_text(text):
# text = nlp(text)
# text = " ".join(
# [word.lemma_ if word.lemma_ != "-PRON-" else word.text for word in text]
# )
# return text
# lemmatize_text("My system keeps crashing! his crashed yesterday, ours crashes daily")
Esquema basico
[25]:
##
## Clean html
##
from bs4 import BeautifulSoup
## captura
url = "http://news.bbc.co.uk/2/hi/health/2284783.stm"
html = request.urlopen(url).read().decode("utf8")
## se remueven las etiquetas
raw = BeautifulSoup(html, "html.parser").get_text()
## tokenizer
tokens = nltk.wordpunct_tokenize(raw)
## tokens --> text
text = nltk.Text(tokens)
## normalizacion
## remocion de puntuacion, acentos, numeros, puntuacion, ....
words = [w.lower() for w in text]
# vocabulario
sorted(set(words))[:20]
[25]:
['"',
"'",
',',
',"',
'-',
'-------------',
'----------------------------------------------------------------------------------',
'.',
'."',
'/',
'01',
'02',
'09',
'11',
'12',
'17',
'200',
'2002',
'2202',
'27']
Text wrapping
[26]:
saying = ['After', 'all', 'is', 'said', 'and', 'done', ',', 'more', 'is', 'said', 'than', 'done', '.']
for word in saying:
print(word, '(' + str(len(word)) + '),', end=' ')
After (5), all (3), is (2), said (4), and (3), done (4), , (1), more (4), is (2), said (4), than (4), done (4), . (1),
[27]:
from textwrap import fill
pieces = ["{} {}".format(word, len(word)) for word in saying]
output = ' '.join(pieces)
print(fill(output))
After 5 all 3 is 2 said 4 and 3 done 4 , 1 more 4 is 2 said 4 than 4
done 4 . 1